\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2021

Subject Code:3140708
Date:24/12/2021

Subject Name:Discrete Mathematics
 Time:10:30 AM TO 01:00 PM Instructions:
 1. Attempt all questions.
 2. Make suitable assumptions wherever necessary.
 3. Figures to the right indicate full marks.
 4. Simple and non-programmable scientific calculators are allowed.

Total Marks: 70
Q. 1 (a) Show that for any two sets A and $B, A-(A \cap B)=A-B$.
(b) If $S=\{a, b, c\}$, find nonempty disjoint sets A_{1} and A_{2} such that $A_{1} \cup A_{2}=S$. Find the other solutions to this problem.
(c) Using truth table state whether each of the following implication is tautology.
a) $(p \wedge r) \rightarrow p$
b) $(p \wedge q) \rightarrow(p \rightarrow q)$
c) $p \rightarrow(p \vee q)$

Q-2 (a) Given $S=\{1,2,3,----, 10\}$ and a relation R on S. Where,
$R=\{\langle x, y\rangle \mid x+y=10\}$. What are the properties of relation R ?
(b) Let L denotes the relation "less than or equal to" and D denotes the relation "divides". Where $x D y$ means " x divides y ". Both L and D are defined on the set $\{1,2,3,6\}$. Write L and D as sets, find $L \cap D$.
(c) Let $X=\{1,2,3,4,5,6,7\}$ and $R=\{\langle x, y\rangle \mid x-y$ is divisible by 3$\}$. Show that R is an equivalence relation on. Draw the graph of R.
(b) Define equivalence class generated by an element $x \in X$. Let Z be the set of integers and let R bethe relation called "congruence modulo 3 " defined by

$$
R=\{\{x, y\rangle \mid x \in Z \Lambda y \in Z \wedge(x-y) \text { is divisible by } 3\}
$$

Determine therguivalences classes generated by the element of Z.
Q. 3 (a) Let $f(x)$ any real valued function. Show that $g(x)=\frac{f(x)+f(-x)}{2}$ is always an evenchnction where as $h(x)=\frac{f(x)-f(-x)}{2}$ is always an odd function.
(b) The Indian cricket team consist of 16 players. It includes 2 wicket keepers and 5 bowlers: In how many ways can cricket eleven be selected if we have select 1 wicket keeper and at least 4 bowlers?
(c) Let A be the set of factors of particular positive integer m and \leq be the relation divides, that is
$\leq=\{\langle x, y\rangle \mid x \in A \wedge y \in A \wedge(x$ divides $y)\}$ Draw the Hasse diagrams for
a) $m=45$
b) $m=210$.

Q-3 (a) Find the composition of two functions $f(x)=e^{x}$ and $g(x)=x^{3},(f \circ g)(x)$ and $(g \circ f)(x)$. Hence, show that $(f \circ g)(x) \neq(g \circ f)(x)$.
(b) In a box, there are 5 black pens, 3 white pens and 4 red pens. In how many ways can 2 black pens, 2 white pens and 2 red pens can be chosen?
(c) Let A be a given finite set and $\rho(A)$ its power set. Let \subseteq be the inclusion relation on the elements of $\rho(A)$. Draw Hass diagram for $\langle\rho(A), \subseteq\rangle$ for
a) $A=\{a, b, c\}$
b) $A=\{a, b, c, d\}$
Q. 4 (a) Let $\langle L, \leq\rangle$ be a lattice. Show that for $a, b, c \in L$, following inequalities holds.

$$
\begin{gathered}
a \oplus(b \star c)=(a \oplus b) \star(a \oplus c) \\
a *(b \oplus c)=(a * b) \oplus(a * c)
\end{gathered}
$$

(b) Let $G=\{(a, b) \mid a, b \in R\}$. Define binary operation (*) on G as
$(a, b),(c, d) \in G,(a, b) *(c, d)=(a c, b c+d)$. Show that an algebraic structure ($G, *$) is a group.

OR

Q-4 (a) Let G be the set of non-zero real numbers. Define binary operation (*) on G as
$a * b=\frac{a b}{2}$. Show that an algebraic structure $(G, *)$ is an abelian group.
(b) Explain the following terms with proper illustrations.
a) Directed graphs
b) Simple and elementary path
c) Reachability of a vertex
d) Connected graph.

Q-5 (a) Show that sum of in-degrees of all the nodes of simple digraph is equal to the sum of out-degrees of all the nodes and this sum equal to the number of edges in it.
(b) Let $=\{1,2,3,4\}$. For the relation R whose matrix is given, find the matrix of the transitive closure by using Warshall's algorithm.

$$
M_{R}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Q-5 (a) Define tree and root. Also prove that tree with n vertices has $n-1$ edges.
(b) Define in-degree and out-degree of a vertex and matrix of a relation. Let $A=$ $\{a, b, c, d\}$ and let R be the relation on A that has the matrix

$$
M_{R}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

[^0]
D ownload all N O T E S and PAPE R S at StudentSuvidha.com

[^0]: *************

